	Atomic Energy Central School No.4 Rawatbhata Multiple Choice Questions Test (April May 2019-20)										
	MM: 1	.00 C	lass XII	(Physics, Ch	emistry, N	Maths)	Ti	me 90			
1	The rate 2µc is	of alpha particle falls	s on neutra	al sphere is 1012 p	per second. T	he time in which sp	ohere gets	charged by			
	A)	2.25	В)	3.15	C)	6.25	D)	1.66			
2	I wo poi reduced A)	nt charges repel eacl by 10%. The new for 121	h other will ce of repu B)	h a force of 100 N Ision at the same 100	I. One of the distance wou C)	charges is increase Ild be N. 99	ed by 10% a D)	and other is			
3	. Two sm d from e experier	all conducting spher ach other experience ice force F2. The ratio	e of equal e force F1. o of F1 to F B)	radius have charg If they are brough 2 is	es +1µc and it in contact a	 - 2µc respectively and separated to the 1 · 0 	and placed ne same dis מ	at a distance stance, they			
4	n) Thropoh		D) O oro plac	I:Z	C)	I: O	U)	-Z : I			
4	the cent	re of the triangle. If t	he charges	remain stationer	y then, q =		th charge o	is placed at			
	A)	Q /v2	B)	Q /V 3	C)	-Q /V2	D)	- Q /v3			
5	Two equal negative charges $-q$ are fixed at points (o, a) and (o, $-a$). A positive charge Q is released from rest at the point (2a, o) on the X - axis. The charge Q will A) move to the origin and remain at rest there B) execute simple harmonic motion about the origin C) move to infinity D) execute oscillations but not simple harmonic motion Four charges, each equal to $-Q$ are placed at the corport of a square and a charge $+q$ isplaced										
	at its ce A)	entre. If the system $Q/4(1+2\sqrt{2})$	n is in eq B)	uilibrium, the v -Q/4(1+2 $\sqrt{2}$)	value of q is C)	s -Q/2(1+2√2)	D)	Q/2(1+2 $\sqrt{2}$)			
7	Two po isplace	bint positive charç d at (o, y). For wh	ges q eac ich value	h are placed at of y the force a	(–a, o) and at q₀is max	(a, o). A third p	ositive ch	arge q₀			
	A)	а	B)	2a	C)	$a/\sqrt{2}$	D)	a/√3			
8	Two id length ins to le with a v	entical charged sp / are initially a dist eak from both the velocity u . Then f	oheres su tance d (d spheres unction c	ispended from d << 1) apart be at a constant r of distance x be	a common ecause of th ate. As a re tween ther	point by two maneir mutual repu result the spheres m becomes	assless st Ilsion. The approac	rings of e chargebeg h eachother			
	A)	Vαx	B)	V α x ^{-1/2}	C)	V α x ⁻¹	D)	$V \alpha x^{1/2}$			
9	A char 45∘with horizor	ged particle of ma speed 20m/s. In Ital ground of the	ass 1 kg a space a h projectil	nd charge 2µc i norizontal elect e thrown is	s thrown fr ric field E =	rom a horizontal 2 ×10 ⁷ V/m exist	l ground a .The rang	at an angle e on			
	A)	100 meter	в)	50 meter	0)	200 meter	D)	0 meter			
10	A n elec torque A)	tric dipole is placed at equal to 8 √3Nm. -8×10 ³	an angle o If the dip B)	f 60° with an ele ole length is 20 8.54×10^{-4}	ectric field o m then the C)	of intensity 10 ⁵ N e charge on the 8×10 ⁻³	IC-1.It exp dipole is . D)	eriences a C. .85×10 ⁻⁶			
11	A sphe distanc A)	re of radius R has e <i>x</i> from its centre x	a uniforr e, (for <i>x</i> < B)	m distribution of R), the electric x^{-1}	of electric c field is dir C)	harge in its volu ectly proportior x ⁻²	ime. At a nal to D)	 x ²			

12	Two P work d	oints P and Q are lone in moving 10	maintain 0 electro ^{B)}	ed at the Poter ns from P to Q -9.60×10^{-17}	ntials of 10 is C)	v and -4 v, resp -2.24 ×10 ⁻¹⁶ l	ectively. ס)	The	
13	The ele	2.24 × 10 J	-, at any Do	-7.00×10^{-3}	in matrac)		-	7.00×10	
10	x = 4x volt. The electric field at the point (1m, 0, 2m) in volt/metre is								
	A)	8, along	B)	8, along	C)	16, along	D)	16, along	
		negative x - axis		positives x -		negative x -		positives	
		C C		axis		axis		<i>x</i> - axis	
14	Charge	es of +3.33×10 ⁻⁹ C a	re placec	l at each of the	four corne	ers of a square o	f side 8cr	n. The	
	potent	ial at the intersec	tion of th	le diagonals is .	 C)	1500 - 12 Volt	D)	2600 Malt	
45	~) 			900 v2 voit		1500 v2 voit	U)	3600 VOIL	
15	. I WO K	They are broug	ike charge:	s and placed at a c	ertain distar	nce apart repel eac I distance equal to l	h other Wi balf their ii	in a certain	
	The force	e of repulsion betwe	en them ir	ncreases 4.5 times	in comparis	on with the initial v	/alue. The	ratio of the	
	initial ch	narges of the balls is.							
	A)	4 · 1	B)	6 · 1	C)	3 · 1	D)	2· 1	
10	,		,		- /	0.1	,	2. 1	
16	A point	charge q is situated a	at a distan its length)	ce r from one end The magnitude o	of a thin cor	nducting rod of leng	gth L havin o is	g a charge Q	
	A)	2 kqQ/r(r + L)	B)	kqQ /r(r + L)	C)	kqQ/r(r - L)	D)	 kQ /r(r + L)	
17	Two poi	nt charges of +16µc a	and –9µc a	re placed 8 cm ap	art in air	Distance of	a point fro	om –9µc charge	
	at which	n the resultant electri	ic field is ze	ero.			·	1 0	
	A)	24 cm	B)	9 cm	C)	16 cm	D)	35 cm	
18	, Δn inclir	ed plane making an	angle of 30	$)^{\circ}$ with the borizon	, ntal is nlaced	in an uniform elec	, tric field		
	E = 100	Vm–1. A particle of n	nass 1 kg a	nd charge 0.01 c is	s allowed to	slide down from re	est from a h	neight of 1m. I	
	f the co	efficient of friction is	0.2 the tin	ne taken by the pa	rticle to read	ch the bottom is	sec.	5	
	A)	2.337	B)	4.337	C)	5	D)	1.337	
19	, A small	sphere whose mass	, is 0.1 am c	arries a charge of	⁷ 3x 10 ⁻¹⁰ C of	a silk fibre 5 cm lo	, na The oth	ner end of the	
	fibre is a	attached to a large ve	ertical conc	lucting, which has	a surface ch	harge of 25×10^{-25} C	m ⁻² on eac	h side.	
	When th	ne system is freely ha	inging the	angle fibre makes	with vertica	l is	D)	4E 0 ⁰	
	A)) 41.8	D)	40	0)	40.8	D)	45.8	
20	A Semic	ircular rod is charged	luniformly	with a total charg	ge Q coulom	b. The electric field	intensity a	at the centre of	
	curvatu	re is							
	A)	2 KQ $/ \pi r^2$	B)	3KQ /πr ²	C)	KQ /πr ²	D)	4KQ/ πr ²	
21	Two un	iformly charged sphe	erical cond	uctors A and B hav	/ing radius 1	mm and 2mm are s	separated	by a distance	
	of 5 cm.	If the spheres are co	onnected b	y a conducting wi	re then in eq	uilibrium condition	n, the ratio	of the	
	A)		B)	1 : 2	C)	2 : 1	D)	1:4	
22	In Millil	kan's oil drop experin	nent an oil	drop carrving a ch	harge Q is he	eld stationary by a r	o.d. 2400 v	between the	
	plates.	To keep a drop of hal	f the radiu	s stationary the po	otential diffe	rence had to be ma	ade 600 v.	What is the	
	charge (A)	on the second drop? $30/2$	B)	$\Omega/4$	C)	0	D)	Q/2	
22	۲۰) ۲۰۰۰-۲	JQ/2	-,	V/H		K triangle ADC of stat			
20	electric	field at the point c is.	at the veri	IICE2 A SUO R OI SU	requilateral	UTATIVIE ABC OF SIDE	e a. The ma	ayriitude of	
		1							

	A)	Kq /a ²	B)	3Kq /a ²	C)	2Kq /a ²	D)	q/πε 2 t a
24	A Charge	q is placed at the ce	ntre of the	open end of cylin	drical vesse	l. The flux of the ele	ectric field	through the
	surface c A)	of the vessel is $q' \in_0$	B)	$q/2 \in_0$	C)	$2q' \in _0$	D)	Zero
25	An infini electric i	tly long thin straight ntiensity at a point 18	wire has u 8 cm away	niform linear char is NC ⁻¹	ge density o	f 1/3 c/m . Then, tl	ne magnitu	ude of the
	A)	0.66×10 ¹¹	B)	1.32×10 ¹¹	C)	0.33×10 ¹¹	D)	3 ×10 ¹¹
26	. A long s	string with a charge o	of λ per uni	t length passes th	rough an im	aginary cube of edg	e I. The m	aximum
	possible A)	$\sqrt{3}$ λl/ε ₀	B)	a through the cub $\lambda I/\epsilon_0$	C)	 √2λI/ϵ₀	D)	$6\lambda l^2/\epsilon_0$
27	Three ch	arges 2q, –q, –q are l	ocated at	the vertices of an	equilateral t	riangle. At the cent	re of the ti	iangle.
	A)	The Field is Zero but Potential is non - zero	B)	The Field is non - Zero but Potential is zero	C)	Both field and Potential are Zero	D)	Both field and Potential are non- Zerc
28	In the el	ectric field of a point	: charge q,	a certain charge is	carried fror	m point A to B, C, D	and E. The	en the work done
	A)	ls least along the Path AB	B)	Is least along the Path AD	C)	Is Zero along all the Path AB, AC, and	D)	ls least along AE
29	. Three c respectiv	oncentric spherical slively. If V_A , V_B and V_C d	hells have lenote the	radii a, b and c (a · Potentials of the t	< b < c) and l hree shells,	have surface charge then for c = a + b, v	e densities ve have	σ , – σ and σ
20	A)	$V_{\rm C} = V_{\rm B} = V_{\rm A}$	B)	$V_{\rm C} = V_{\rm B} \neq V_{\rm A}$	C)	$V_C \neq V_B \neq V_A$	D)	$V_{\rm C} = V_{\rm A} \neq V_{\rm B}$
30	I wo cha	rged spheres of radii	RT and R2	$\frac{1}{2}$ having equal surf	ace charge o	density. The ratio of $(D_1/D_2)^2$	their pote	ential is
31	ר) If a charc	R ₂ /R ₁	b) tor of radiu	(K_2/K_1) is 10cm has noted	tial v at a no	(κ_1/κ_2)	m its cont	κ_1/κ_2
01	potentia	l at a point distant 15	for of radic form from t	he centre will be .		ont distant 5 cm nd		
	A)	1V/3	B)	3V/2	C)	3V	D)	22V/3
32	Electric	potential at any poin	t is V = -5x	x + 3y + √15z , ther	the magnit	ude of the electric f	ield is	N/C.
	A)	3√2	B)	4√2	C)	0	D)	5√2
33	. A simpl positively A)	e pendulum of period y charged metal plate Remains equal to	d T has a m e, its perio B)	netal bob which is d will Less than T	negatively c C)	harged. If it is allow Infinite	ed to ascil D)	late above a Greater than T
34	Which of	T the following units is	useful in r	elating concentrat	on of solutio	n with its vapour pr	essure?	
	A)	Mole fraction	В)	ppm	C)	Mass percentage	D)	Molality
35	Maximun depend u	n amount of a solid s	olute that c	an be dissolved ir	a specified	amount of a given l	iquid solve	ent does not
	A)	Temperature	В)	Nature of solute	C)	Pressure	D)	Nature of solvent
36	Which o	of the following aqueo	ous solution	ns should have the	e highest boi	ling point?		
	A)	1M NaOH	В)	$1M Na_2SO_4$	C)	1M NH ₄ NO ₃	D)	1M KNO ₃
				3				

	The va	lue of Van't Hoff facto	ors for KC	CI, NaCI and K_2SO_4 i	espective	ly are:					
	A)	2,2 & 2	B)	2,2 & 3	C)	1,1 & 2	D)	1,1 & 1			
38	Value	of Henry's constant K _t	⊣is:								
	A)	Increase with increase in temperature	B)	Decrease with increase in temperature	C)	Remains constant	D)	First increase then decrease			
39	The bo	biling point of a solven	t contain	ing a non-volatile su	lute:						
	A)	Is depressed	B)	Is elevated	C)	Does not change	D)	none			
40	The m	olality of pure water is	:								
	A)	55.5	B)	20	C)	18	D)	10			
41	Which	of the following conce	entrations	s is not affected by te	emperatur	e:					
	A)	Normality	B)	Molality	C)	Molarity	D)	Formality			
42	The nu	umber of moles of NaC	Cl in 3 litr	es of 3M solution is:							
	A)	1	B)	3	C)	9	D)	27			
43	The ar	he amount of solute required to prepare 10 litres of decimolar solution is:									
	A)	0.01mole	B)	0.2mole	C)	0.05mole	D)	1.0mole			
44	One kilogram of water contains 4.0g of NaOH. The concentration of the solution is best expressed as:										
	A)	0.1molal	B)	0.1molar	C)	decinormal	D)	About 0.1mo e			
45	Isotoni	c solutions are the sol	ution ha	ving the same:							
	A)	Surface tension	B)	Vapour pressure	C)	Osmotic pressure	D)	Viscosity			
46	Which	of the following is not	a colliga	tive property?							
	A)	Depression in FP	B)	Elevation in BP	C)	Osmotic pressure	D)	Lowering of vapo pressure			
47	An aqu	ueous solution contain	ing 6.0 g	of urea in 500 ml of	solution h	nas a density equal to	1.05 g/ci	m ³ . If the molar			
	A)	0.20	0.19	C)	0.10	D)	1.20				
48	Which	pair will not form an ic	deal solu	tion?							
	A)	$C_2H_5Br \& C_2H_5I$	B)	$C_6H_5Br\&C_6H_5I$	C)	$C_6H_6 \& C_6H_5CH_3$	D)	$C_2H_5I \& C_2H_5OH$			
49	The Va	an't Hoff factor for 0.1	M Ba(NO	$D_3)_2$ solution is 2.74.	The degre	e of dissociation is:					
	A)	91.3%	B)	87%	C)	100%	D)	74%			
50	Campl	nor is often used in mo	olecular r	nass determination	pecause:						
	A)	High cryoscopic constant	B)	It is volatile	C)	It is solvent for organic	D)	It is readily available			

51	The mol	le fraction of methanc	ol in its 4.5	molal aqueous sol	lution is:			
	A)	0.250	B)	0.125	C)	0.100	D)	0.075
52	The diffe	erence between the e	electrode p	otentials of two ele	ectrodes whe	en no current is draw	vn through	the cell is called:
	A)	Cell potential	В)	Cell emf	C)	Potential difference	D)	Cell voltage
53	An elect	trochemical cell can b	ehave like	e an electrolytic cel	l when:			
	A)	$E_{cell} = 0$	B)	E _{cell} >E _{ext}	C)	E _{ext} >E _{cell}	D)	$E_{cell} = E_{ext}$
54	The qua	intity of charge requir	ed to obta	in one mole of alun	ninium from	AI2O3 is:		
	A)	1F	B)	6F	C)	3F	D)	2F
55	Molar co	onductivity of ionic so	lution dep	ends on:				
	A)	Pressure	В)	Distance between electrodes	C)	Concentration of solution	D)	Surface area of electrodes
56	The SI ι	unit of molar conducti	vity is:					
	A)	S m ² mol ⁻¹	B)	S m ⁻¹ mol ⁻¹	C)	S m ² mol	D)	S m ³ mol ⁻¹
57	If the co	nductivity and conduc	ctance of a	a solution is same t	then its cell o	constant is equal to:		
	A)	1	B)	0	C)	10	D)	1000
58	E^{ν}_{cell} and	ΔG^{0} are related as:						
	A)	$\Delta G^0 = nFE^0_{cell}$	В)	$\Delta G = -nFE^{0}_{Cell}$	C)	$\Delta G^0 = -nFE^0_{Cell}$	D)	$\Delta G^0 = - nFE^0 cell = 0$
59	Rust is a	a mixture of :						
	A)	FeO& Fe(OH) ₃	B)	FeO& Fe(OH) ₂	C)	Fe ₂ O ₃ & Fe(OH) ₃	D)	Fe₃O₄& Fe(OH)₃
60	The emi	f of the cell $Cu_{(s)}$ Cu Cu^{2+}/Cu is:	²⁺ (1M) ∥ /	Ag^+ (1M) Ag is 0.4	16 V. The sta	andard REP of Ag ⁺ //	Ag is 0.80	V. The standard
	A)	- 0.34 V	B)	1.26 V	C)	-1.26 V	D)	0.34 V
61	Conside for the r $Sn_{(s)} + 2$	er the following E^0 value eaction: $2Fe^{3+}_{(aq)} \rightarrow 2Fe^{2+}_{(aq)} + 2Fe^{3+}_{(aq)} \rightarrow 2Fe^{3+}_{(aq)} + 2Fe^{3+}$	ues, E [∪] (Fe ⊦ Sn ²⁺ (aq) is	e ³⁺ Fe ²⁺) = +0.77 V S:	ζ, Ε ^υ (Sn ²⁺ Sι	n) = - 0.14 V. Under	standard	conditions, the potential
	A)	0.91 V	В)	1.04 V	C)	1.08 V	U)	0.63 V
62	The limi for NaB	ting molar conductivit r is:	ties ∧° for I	NaCl, KBr and KCl	are 126, 152	2 ans 150 S cm ² mo	ol 'respecti	vely. The ∧0
	A)	278 S cm2 mol-1	B)	976 S cm2 mol-1	C)	128 S cm2 mol-1	D)	302 S cm2 mol-1
63	For spor	ntaneity of a cell, which	ch is corre	ct?				
	A)	$\Delta G = 0, E^0 = 0$	B)	$\Delta G = -ve, E^0 = 0$	C)	$\Delta G = +ve, E^0 = 0$	D)	$\Delta G = -ve, E^0 = +ve$
64	A hydrog around t A)	gen gas electrode is i the platinum wire at o 0.118 V	made by d ne atm pi B)	lipping platinum wir essure. The oxidat 1.18V	re in a solutio tion potentia C)	on of HCl of pH =10 I of electrode would 0.059 V	and by pa be? D)	assing hydroger gas 0.59 V
65	, When Ω	1 mol $Mn\Omega_{\lambda}^{2^{-}}$ is ovidi	, zed the a	uantity of electricity	v required to	completely oxidize	, MnΩ, ⁻¹ ie	•
	A)	96500 C	B)	2x96500 C	C)	9650 C	D)	96050 C
	· ·/	· · · · · · · · · · · · · · · · · · ·	-/		-,		- /	
1								

66	When the same quantity of e and 0.30 respectively. Ratio o A) 0.8	electricity is of electroc B)	s passed for half ar hemical equivalent 1.25	hour, the a of Cu and C C)	mount of Cu and Cr Cr is:. 2.5	⁻ deposite D)	ed are 0.375 1.62
67	If A = $\begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$, then A A) $\theta = n\pi, n \in Z$	^T +A= I ₂ , if B)	$\theta = (2n+1)\frac{\pi}{2},$	C)	$\theta = 2n\pi + \frac{\pi}{3},$	D)	None of these
68	Out of the following matrices,	choose th	$n \in \mathbb{Z}$ nat matrix which is a	a scalar mat	$n \in \mathbb{Z}$		
	$A) \qquad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	B)		C)		D)	
69	If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $KA = \begin{bmatrix} 0 \\ 2b \end{bmatrix}$	$\frac{3a}{24}$, ther	n the values of k,a,l	o are respec	tively		
	A) -6,-12,-18	B)	-6,4,9	C)	-6,-4,-9	D)	-6,12,18
70	The matrix A = $\begin{bmatrix} 0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0 \end{bmatrix}$ is a	1					
	A) Square matrix	B)	Diagonal matrix	C)	Unit matrix	D)	None of these
71	The number of possible matri	ces of ord	er 3x3 with each e	ntry 2 or 0 is	6		
	A) 9	B)	27	C)	81	D)	None of these
72	If A and B are matrices of the	same ord	ler, then AB'-B'A i	s a		_,	
	A) Skew-symmetric matrix	B)	Null matrix	C)	Unit matrix	D)	Symmetric matrix
73	If matrix A= [a _{ij}] _{2x2} , where a _{ij} ≕ A) I	(1, if i ≠ 1 (0, if i = j B)	, then A ² is equal ⁻ A	to C)	0	D)	-1
74	If A and B are square matrice	es of the sa	ame order, then (A-	+B)(A-B) is e	equal to		
	A) $A^2 - B^2$	B)	$A^2 - BA - AB - BA - AB - B^2$	C)	$A^2 - B^2 + BA - AB$	D)	A ² – BA + B ² +AB
75	If a, b, c are distinct, then the	value of x	a satisfying $\begin{bmatrix} 0\\ x^2 + a\\ \cdots & a \end{bmatrix}$	$\begin{array}{ccc} x^2 - a & x^2 \\ 0 & x^2 \end{array}$	$\begin{vmatrix} 3 & -b \\ 2 & +c \end{vmatrix} = 0$ is		
	A) c	B)	a a	$\begin{array}{c} x = c \\ C \end{array}$	b	D)	0 Type equat on here
76	If ω is a non – real cube ro	ot of uni	ity and n is not a	multiple o	f 3, then $\Delta = \begin{bmatrix} 1 \\ \omega^{2n} \\ \vdots \end{bmatrix}$	ω^n of 1	$\begin{bmatrix} \omega^{2n} \\ \omega^n \end{bmatrix}$ is
	A) 0	B)	ω	C)	ω^2	D)	1
77	The value of $\begin{bmatrix} 5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6 \end{bmatrix}$						
	A) 5 ²	B)	0	C)	5 ³	D)	5 ³
78	Let P and Q be two matrices	of order 2	xn and 2xp respect	ively . If n=p	o,then order of matri	x 4P-3Q i	s Type equatior here.
70	A) Px2	B)	2xn	C)	nx3	D)	pxn
79	If A IS a 3x4 matrix and B IS a	matrix su				s is of ord	
80	Matrices A and R are inverse	s of each :	other if	0)	-VY-	0)	3.4
50	A) AB=BA	B)	AB=BA=O	C)	AB=O.BA=I	D)	AB=BA=I
81	If a matrix A is both symmetri	c and ske	w symmetric then A	A is	<i>2,2</i>	-,	
			6				
			•				II.

	A)	Diagonal matrix	B)	Zero matrix	C)	Unit matrix	D)	Square matrix
82	If A=[(A)	^a ij] is a skew sym 0 for some i	imetric ma B)	atrix of order n ,thei 1 for some i	n aij is C)	0 for all i=1.2n	D)	1 for all i= 1.2.3n
83	If A=	$\begin{array}{cccc} 0 & -4 & 1 \\ 2 & k & -3 \\ 1 & 2 & -1 \\ k \neq 4 \end{array}$	B)	k = 8	C)	k≠ 8	D)	k=8
84	If A= $\begin{vmatrix} 1 \\ a \\ a^2 \end{vmatrix}$	$\begin{vmatrix} 1 & 1 \\ b & c \\ b^2 & c^2 \end{vmatrix} \text{ and } \mathbf{B} = \begin{vmatrix} 1 \\ 1 \\ 1 \\ 1 \end{vmatrix}$	bc a ca b ab c	hen	-)		,	
85	A) If A = $\begin{bmatrix} 2\\0\\0 \end{bmatrix}$	A+B=0 $\begin{bmatrix} 0 & 0 \\ 2 & 0 \\ 0 & 2 \end{bmatrix}$, then $A^5 =$	В)	A+2B=0	C)	A=B	D)	2A+B=0
	A)	5A	B)	10A	C)	16A	D)	32A
86	If A is a	matrix of order 3 and	A =8, the	en adj A =				
	A)	1	B)	2	C)	2 ³	D)	2 ⁶
87	If $A^2 - A$	+I = 0 then the invers	e of A is		-			
00	A)		B)	A + I	C)	I - A	D)	A - I
88		square matrix such tr	at A = I,			0	D)	24
89	A)	31	D) 1	A	0)	0	D)	28
00	If $A = \begin{bmatrix} -\\5 \end{bmatrix}$ A)	$\begin{bmatrix} -2 \\ -2 \end{bmatrix}$ be such that A	= kA, the B	en k equals 1/19	C)	-19	D)	-1/19
90	There a	re two values of a wh	ich makes	the determinant A	$= \begin{vmatrix} 1 & -2 & 3 \\ 2 & a & -2 \\ 0 & 4 & 2 \end{vmatrix}$	$\begin{bmatrix} 5\\ -1\\ a \end{bmatrix}$ equal to 86. The	sum of the	ese two values
	is A)	4	B)	5	C)	-4	D)	9
91	The max	ximum value of A= $\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$	1 1 1 + <i>cos</i> Ø B)	$\begin{vmatrix} 1 & 1 \\ + \sin \phi & 1 \\ 1 & 1 \end{vmatrix} $ is $(\phi is $	real)	10	וח	.02
	A)	/2	D)	$\frac{\sqrt{3}}{2}$	0)	ν2	D)	$\frac{\sqrt{3}}{2}$
92	lf a,b,c a	are in A.P then value	of determi	nant $\begin{vmatrix} x + 2 & x + 3 \\ x + 3 & x + 4 \end{vmatrix}$	$\begin{array}{c} x + 2a \\ x + 2b \end{array}$ is			
	A)	0	B)	x + 4 + x + 5	x + 2c l C)	x	D)	2x
93	The nun	nber of solutions of sy	stem of e	quations: 2x x-3 x+4	x+y-z=7 3y+2z=1 4y-3z=5 is			
	A)	3	B)	2	C)	1	D)	0
94	If A= $\begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ a & 0 \\ a & 0 \end{bmatrix}$ then the value	ue of <i>adj</i>	A is				
	A)	a ²⁷	B)	a ⁹	C)	a^6	D)	a^2
95	It A is a	skew symmetric matr	Then A^2	'IS a	\sim	alkaus as see a tri' -	D)	nono st
	A)		D)	matrix	C)	skew symmetric matrix	ט)	these
96	If A, B, (2 are angles of a triar -1 cosC cosC -1 cosB cosA	ngle, then t cosB cosA -1	the determinant equal to 7				

	A)	0	B)	-1	C)	1	D)	none
97	lf x,y,z	are all different from	zero and	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{bmatrix} 1 \\ 1 \\ 1 + z \end{bmatrix} = 0$ the	n the value of x^{-1} + y	⁷⁻¹ +z ⁻¹ is	
	A)	xyz	В)	-1	Č)	-x-y-z	D)	none
98	If A and	B are matrices of orc	ler 3x3 and	d A +5 and B	=3 then 3 <i>AB</i>	is		
	A)	400	B)	405	C)	385	D)	150
99	The valu cofactor	ue of a third order det r is	erminant is	s 12 then the v	alue of determir	nant formed by repla	cing each	element by its
	A)	124	B)	140	C)	144	D)	128
100	If A= $\begin{bmatrix} 2\\0\\1 \end{bmatrix}$	$\begin{vmatrix} k & -3 \\ 2 & 5 \\ 1 & 3 \end{vmatrix}$ then A^{-1} ex	ists if					
	A)	k=2	B)	k≠2		k=-2	D)none	

1	2	3	4	5	6	7	8	9	10
С	С	А	В	D	В	С	В	С	С
11	12	13	14	15	16	17	18	19	20
А	А	А	С	D	В	А	D	С	А
21	22	23	24	25	26	27	28	29	30
С	D	С	D	С	А	В	С	D	D
31	32	33	34	35	36	37	38	39	40
D	С	В	А	С	В	В	А	В	А
41	42	43	44	45	46	47	48	49	50
В	С	D	А	С	D	В	D	В	А
51	52	53	54	55	56	57	58	59	60
D	В	С	С	С	А	А	С	С	D
61	62	63	64	65	66	67	68	69	70
А	С	D	D	С	В	С	А	С	D
71	72A	73A	74	75	76	77	78	79	80
D	А	А	С	D	А	В	В	D	D
81	82	83	84	85	86	87	88	89	90
В	С	С	А	С	D	С	В	В	С
91	92	93	94	95	96	97	98	99	100
Α	Α	D	С	В	А	В	В	С	D

Answer Key Class XII PCM